Conjuntos Numéricos
Os conjuntos numéricos reúnem diversos conjuntos cujos elementos são números. Eles são formados pelos números naturais, inteiros, racionais, irracionais, reais e complexos.
O ramo da matemática que estuda os conjuntos numéricos é a Teoria dos Conjuntos. Cada conjunto possui características gerais e propriedades específicas.
Eles surgiram e se desenvolveram conforme a necessidade humana e, sua história, caminha com a história da Matemática.
Confira abaixo as características de cada um deles, tais como: conceito, símbolo e subconjuntos.
Conjunto dos Números Naturais (N)
O conjunto dos números naturais é representado por N. Ele reúne os números que usamos para contar (incluindo o zero) e é infinito.
No conjunto dos naturais, há apenas números positivos (além do zero). Nele, um novo número sempre pode ser obtido ao adicionar uma unidade ao número anterior.
Subconjuntos dos Números Naturais
- N* = {1, 2, 3, 4, 5..., n, ...} ou N* = N – {0}: conjuntos dos números naturais não-nulos, ou seja, sem o zero.
- Np = {0, 2, 4, 6, 8..., 2n, ...}, em que n ∈ N: conjunto dos números naturais pares.
- Ni = {1, 3, 5, 7, 9..., 2n+1, ...}, em que n ∈ N: conjunto dos números naturais ímpares.
- P = {2, 3, 5, 7, 11, 13, ...}: conjunto dos números naturais primos.
Conjunto dos Números Inteiros (Z)
O conjunto dos números inteiros é representado por Z. Reúne os elementos dos números naturais (N) e seus opostos. Assim, conclui-se que N é um subconjunto de Z, assim, N ⊂ Z (N está contido em Z).
É possível obter sempre um sucessor, ao adicionar uma unidade ao elemento anterior. Também é possível obter sempre um antecessor, ao subtrair uma unidade do anterior.
O conjunto dos inteiros é infinito, tanto no sentido dos negativos como dos positivos.
Subconjuntos dos Números Inteiros
- Z* = {..., –4, –3, –2, –1, 1, 2, 3, 4, ...} ou Z* = Z – {0}: conjuntos dos números inteiros não-nulos, ou seja, sem o zero.
- Z+ = {0, 1, 2, 3, 4, 5, ...}: conjunto dos números inteiros e não-negativos. Note que Z+ = N.
- Z*+ = {1, 2, 3, 4, 5, ...}: conjunto dos números inteiros positivos e sem o zero.
- Z – = {..., –5, –4, –3, –2, –1, 0}: conjunto dos números inteiros não-positivos.
- Z*– = {..., –5, –4, –3, –2, –1}: conjunto dos números inteiros negativos e sem o zero.
Conjunto dos Números Racionais (Q)
O conjunto dos números racionais é representado por Q. Reúne todos os números que podem ser escritos na forma:
,
sendo a e b números inteiros e b ≠ 0.
Q = {0, ±1, ±1/2, ±1/3, ..., ±2, ±2/3, ±2/5, ..., ±3, ±3/2, ±3/4, ...}
Note que todo número inteiro é também número racional. Assim, Z é um subconjunto de Q.
Importante ressaltar que as dízimas periódicas são números racionais. Elas são números decimais que se repetem após a vírgula, por exemplo: 1,4444444444... Embora possua infinitas casas decimais, pode ser escrito como a fração 13/9.
Subconjuntos dos Números Racionais
- Q* = subconjunto dos números racionais não-nulos, formado pelos números racionais sem o zero.
- Q+ = subconjunto dos números racionais não-negativos, formado pelos números racionais positivos e o zero.
- Q*+ = subconjunto dos números racionais positivos, formado pelos números racionais positivos, sem o zero.
- Q– = subconjunto dos números racionais não-positivos, formado pelos números racionais negativos e o zero.
- Q*– = subconjunto dos números racionais negativos, formado pelos números racionais negativos, sem o zero.
Conjunto dos Números Irracionais (I)
O conjunto dos números irracionais é representado por I. Reúne os números decimais não exatos com uma representação infinita e não periódica, por exemplo: 3,141592... ou 1,203040...
Os números irracionais não contêm os racionais. São conjuntos sem intersecção.
Conjunto dos Números Reais (R)
O conjunto dos números reais é representado por R. Esse conjunto é formado pelos números racionais (Q) e irracionais (I). Assim, temos que R = Q ∪ I (união entre os racionais e os irracionais).
Além disso, N, Z, Q e I são subconjuntos de R.
Subconjuntos dos Números Reais
- R*= {x ∈ R│x ≠ 0}: conjunto dos números reais não-nulos.
- R+ = {x ∈ R│x ≥ 0}: conjunto dos números reais não-negativos.
- R*+ = {x ∈ R│x > 0}: conjunto dos números reais positivos.
- R– = {x ∈ R│x ≤ 0}: conjunto dos números reais não-positivos.
- R*– = {x ∈ R│x < 0}: conjunto dos números reais negativos.
Intervalos Numéricos
Há ainda um subconjunto relacionado com os números reais, chamados de intervalos. Sejam a e b números reais e a < b, temos os seguintes intervalos reais:
Intervalo aberto de extremos: ]a,b[ = {x ∈ R│a < x < b}
Intervalo fechado de extremos: [a,b] = {x ∈ R│a ≤ x ≤ b}
Intervalo aberto à direta (ou fechado à esquerda) de extremos: [a,b[ = {x ∈ R│a ≤ x < b}
Intervalo aberto à esquerda (ou fechado à direita) de extremos: ]a,b] = {x ∈ R│a < x ≤ b}
Propriedades dos Conjuntos Numéricos
Para facilitar os estudos sobre os conjuntos numéricos, segue abaixo algumas de suas propriedades:
- O conjunto dos números naturais (N) é um subconjunto dos números inteiros Z, (N ⊂ Z).
- O conjunto dos números inteiros (Z) é um subconjunto dos números racionais Q, (Z ⊂ Q).
- O conjunto dos números racionais (Q) é um subconjunto dos números reais (R). (Q ⊂ R)
- Os conjuntos dos números naturais (N), inteiros (Z), racionais (Q) e irracionais (I) são subconjuntos dos números reais (R).
Exercícios sobre conjuntos numéricos
Exercício 1
(UFOP-MG) A respeito dos números a = 0,499999… e b = 0,5, é correto afirmar:
a) b = a + 0,011111
b) a = b
c) a é irracional e b é racional
d) a < b
Exercício 2
(UEL-PR) Observe os seguintes números:
I. 2,212121...
II. 3,212223...
III. π/5
IV. 3,1416
V. √– 4
Assinale a alternativa que identifica os números irracionais:
a) I e II.
b) I e IV.
c) II e III.
d) II e V.
e) III e V.
Exercício 3
(Cefet-CE) É unitário o conjunto:
a) {x ∈ Z│x < 1}
b) {x ∈ Z│x2 > 0}
c) {x ∈ R│x2 = 1}
d) {x ∈ Q│x2 < 2}
e) {x ∈ N│1 < 2x < 4}
Leia também:
Para praticar: Exercícios de Conjuntos Numéricos
ASTH, Rafael. Conjuntos Numéricos. Toda Matéria, [s.d.]. Disponível em: https://www.todamateria.com.br/conjuntos-numericos/. Acesso em: