Números Inteiros


Os números inteiros são os números positivos e negativos. Estes números formam o conjunto dos números inteiros, indicado por ℤ.

O conjunto dos números inteiros é infinito e pode ser representado da seguinte maneira:

ℤ = {..., - 3, - 2, - 1, 0, 1, 2, 3,...}

Os números inteiros negativos são sempre acompanhados pelo sinal (-), enquanto os números inteiros positivos podem vir ou não acompanhados de sinal (+).

O zero é um número neutro, ou seja, não é um número nem positivo e nem negativo.

A relação de inclusão no conjunto dos inteiros envolve o conjunto dos números naturais (ℕ) junto com os números negativos.

Todo número inteiro possui em antecessor e um sucessor. Por exemplo, o antecessor de -3 é -4, já o seu sucessor é o -2.

Representação na Reta Numérica

Os números inteiros podem ser representados por pontos na reta numérica. Nesta representação, a distância entre dois números consecutivos é sempre a mesma.

Os números que estão a uma mesma distância do zero, são chamados de opostos ou simétricos.

Por exemplo, o -4 é o simétrico de 4, pois estão a uma mesma distância do zero, conforme assinalado na figura abaixo:

Números opostos

​Subconjuntos de ℤ

O conjunto dos números naturais (ℕ) é um subconjunto de ℤ, pois está contido no conjunto dos números inteiros. Assim:

Subconjunto dos naturais

Além do conjunto dos números naturais, destacamos os seguintes subconjuntos de ℤ:

  • ℤ* : é o subconjunto dos números inteiros, com exceção do zero. ℤ* = {..., -3,-2,-1, 1, 2, 3, 4, ...}
  • + : são os números inteiros não-negativos, ou seja ℤ+ = {0, 1, 2, 3, 4, ...}
  • ℤ _ : é o subconjunto dos números inteiros não-positivos, ou seja ℤ_= {..., -4,-3,-2,-1, 0}
  • ℤ*+ : é o subconjunto dos números inteiros, com exceção dos negativos e do zero. ℤ*+ = {1,2,3,4, 5...}
  • ℤ*_ : são os números inteiros, com exceção dos positivos e do zero, ou seja ℤ*_= {..., -4,-3,-2,-1}

Exercícios Resolvidos

1) CEFET - MG - 2013

Sejam a e b números inteiros. A quantidade de números inteiros existentes no intervalo ] a, b [ é

a) b – a – 1
b) b – a
c) b – a + 1
d) b – a + 2

Alternativa a: b – a – 1

2) Faetec - RJ - 2015

Observe o segmento de reta abaixo, dividido em 5 segmentos congruentes:

Faetec 2015

Nele estão representados seis números reais. A quantidade de elementos do conjunto {A,B,C,D} que representa número inteiro é:

a) 0
b) 1
c) 2
d) 3
e) 4

Alternativa c: 2

Leia também: