Polinômios


Os polinômios são expressões algébricas formadas por números (coeficientes) e letras (partes literais). As letras de um polinômio representam os valores desconhecidos da expressão.

Exemplos

a) 3ab + 5
b) x3 + 4xy - 2x2y3
c) 25x2 - 9y2

Monômio, Binômino e Trinômio

Os polinômios são formados por termos. A única operação entre os elementos de um termo é a multiplicação.

Quando um polinômio possui apenas um termo, ele é chamado de monômio.

Exemplos

a) 3x
b) 5abc
c) x2y3z4

Os chamados binômios são polinômios que possuem somente dois monômios (dois termos), separados por uma operação de soma ou subtração.

Exemplos

a) a2 - b2
b) 3x + y
c) 5ab + 3cd2

Já os trinômios são polinômios que possuem três monômios (três termos), separados por operações de soma ou subtração.

Exemplos

a) x2 + 3x + 7
b) 3ab - 4xy - 10y
c) m3n + m2 + n4

Grau dos Polinômios

O grau de um polinômio é dado pelos expoentes da parte literal.

Para encontrar o grau de um polinômio devemos somar os expoentes das letras que compõem cada termo. A maior soma será o grau do polinômio.

Exemplos

a) 2x3 + y

O expoente do primeiro termo é 3 e do segundo termo é 1. Como o maior é 3, o grau do polinômio é 3.

b) 4 x2y + 8x3y3 - xy4

Vamos somar os expoentes de cada termo:

4x2y => 2 + 1 = 3
8x3y2 => 3 + 3 = 6
xy4 => 1 + 4 = 5

Como a maior soma é 6, o grau do polinômio é 6

Obs: o polinômio nulo é aquele que possui todos os coeficientes iguais a zero. Quando isso ocorre, o grau do polinômio não é definido.

Operações com Polinômios

Confira abaixo exemplos das operações entre polinômios:

Adição de Polinômios

Fazemos essa operação somando os coeficientes dos termos semelhantes (mesma parte literal).

(- 7x3 + 5 x2y - xy + 4y) + (- 2x2y + 8xy - 7y)
- 7x3 + 5x2y - 2x2y - xy + 8xy + 4y - 7y
- 7x3 + 3x2y + 7xy - 3y

Subtração de Polinômios

O sinal de menos na frente dos parênteses inverte os sinais de dentro dos parênteses. Após eliminar os parênteses, devemos juntar os termos semelhantes.

(4x2 - 5ky + 6k) - (3x - 8k)
4x2 - 5xk + 6k - 3xk + 8k
4x2 - 8xk + 14k

Multiplicação de Polinômios

Na multiplicação devemos multiplicar termo a termo. Na multiplicação de letras iguais, repete-se e soma-se os expoentes.

(3x2 - 5x + 8) . (-2x + 1)
-6x3 + 3x2 + 10x2 - 5x - 16x + 8
-6x3 + 13x2 - 21x +8

Divisão de Polinômios

Polinômios

Obs: Na divisão de polinômios utilizamos o método chave. Primeiramente realizamos a divisão entre os coeficientes numéricos e depois a divisão de potências de mesma base. Para isso, conserva-se a base e subtraia os expoentes.

Fatoração de Polinômios

Para realizar a fatoração de polinômios temos os seguintes casos:

Fator Comum em Evidência

ax + bx = x (a + b)

Exemplo

4x + 20 = 4 (x + 5)

Agrupamento

ax + bx + ay + by = x . (a + b) + y . (a + b) = (x + y) . (a + b)

Exemplo

8ax + bx + 8ay + by = x (8a + b) + y (8a + b) = (8a + b) . (x + y)

Trinômio Quadrado Perfeito (Adição)

a2 + 2ab + b2 = (a + b)2

Exemplo

x2 + 6x + 9 = (x + 3)2

Trinômio Quadrado Perfeito (Diferença)

a2 - 2ab + b2 = (a - b)2

Exemplo

x2 - 2x + 1 = (x - 1)2

Diferença de Dois Quadrados

(a + b) . (a - b) = a2 - b2

Exemplo

x2 - 25 = (x + 5) . (x - 5)

Cubo Perfeito (Adição)

a3 + 3a2b + 3ab2 + b3 = (a + b)3

Exemplo

x3 + 6x2 + 12x + 8 = x3 + 3 . x2 . 2 + 3 . x . 22 + 23 = (x + 2)3

Cubo Perfeito (Diferença)

a3 - 3a2b + 3ab2 - b3 = (a - b)3

Exemplo

y3 - 9y2 + 27y - 27 = y3 - 3 . y2 . 3 + 3 . y . 32 - 33 = (y - 3)3

Leia também:

Exercícios Resolvidos

1) Classifique em monômios, binômios e trinômios, os polinômios abaixo:

a) 3abcd2
b) 3a + bc - d2
c) 3ab - cd2

a) monômio
b) trinômio
c) binômio

2) Indique o grau dos polinômios:

a) xy3 + 8xy + x2y
b) 2x4 + 3
c) ab + 2b + a
d) zk7 - 10z2k3w6 + 2x

a) grau 4
b) grau 4
c) grau 2
d) grau 11

3) Qual o valor do perímetro da figura abaixo:

Exercício 3 Polinômios

O perímetro da figura é encontrado somando-se todos os lados.
2x3 + 4 + 2x3 + 4 + x3 + 1 + x3 + 1 + x3 + 1 + x3 + 1 = 8x3 + 12

4) Encontre a área da figura:

Exercício 4 Polinômios

A área do retângulo é encontrada multiplicando-se a base pela altura.
(2x + 3) . (x+1) = 2x2 + 5x + 3

5) Fatore os polinômios

a) 8ab + 2a2b - 4ab2
b) 25 + 10y + y2
c) 9 - k2

a) Como existem fatores comuns, fatorar colocando esses fatores em evidência: 2ab (4 + a - 2b)
b) Trinômio quadrado perfeito: (5+y)2
c) Diferença de dois quadrados: (3 + k) . (3 - k)