Equação da Reta

Rosimar Gouveia

A equação da reta pode ser determinada representando-a no plano cartesiano (x,y). Conhecendo as coordenadas de dois pontos distintos pertencentes a reta podemos determinar sua equação.

Também é possível definir uma equação da reta a partir de sua inclinação e das coordenadas de um ponto que lhe pertença.

Equação geral da reta

Dois pontos definem uma reta. Desta forma, podemos encontrar a equação geral da reta fazendo o alinhamento de dois pontos com um ponto (x,y) genérico da reta.

Sejam os pontos A(xa,ya) e B(xb,yb), não coincidentes e pertencentes ao plano cartesiano.

Três pontos estão alinhados quando o determinante da matriz associada a esses pontos é igual a zero. Assim devemos calcular o determinante da seguinte matriz:

Matriz determinante

Desenvolvendo o determinante encontramos a seguinte equação:

(ya - yb) x + (xa - xb) y + xayb - xb - ya = 0

Vamos chamar:

a = (ya - yb)
b = (xa - xb)
c = xayb - xb - ya

A equação geral da reta é definida como:

ax + by + c = 0

Onde a, b e c são constantes e a e b não podem ser simultaneamente nulos.

Exemplo

Encontre uma equação geral da reta que passa pelos pontos A(-1, 8) e B(-5, -1).

Primeiro devemos escrever a condição de alinhamento de três pontos, definindo o matriz associada aos pontos dados e a um ponto genérico P(x,y) pertencente a reta.

Exemplo1 equação geral da reta

Desenvolvendo o determinante, encontramos:

(8+1)x + (1-5)y + 40 + 1 = 0

A equação geral da reta que passa pelos pontos A(-1,8) e B(-5,-1) é:

9x - 4y + 41 = 0

Para saber mais, leia também:

Equação reduzida da reta

Coeficiente angular

Podemos encontrar uma equação da reta r conhecendo a sua inclinação (direção), ou seja o valor do ângulo θ que a reta apresenta em relação ao eixo x.

Para isso associamos um número m, que é chamado de coeficiente angular da reta, tal que:

m = tg θ

O coeficiente angular m também pode ser encontrado conhecendo-se dois pontos pertencentes a reta.

Gráfico da reta r

Como m = tg θ, então:

Fórmula do coeficiente angular

Exemplo

Determine o coeficiente angular da reta r, que passa pelos pontos A(1,4) e B(2,3).

Sendo,

x1 = 1 e y1 = 4
x2 = 2 e y2 = 3


Exemplo do cálculo do coeficiente angular

Conhecendo o coeficiente angular da reta m e um ponto P0(x0,y0) pertencente a ela, podemos definir sua equação.

Para isso vamos substituir na fórmula do coeficiente angular o ponto conhecido P0 e um ponto P(x,y) genérico, também pertencente a reta:

Equação da reta usando o coeficiente

Exemplo

Determine uma equação da reta que passa pelo ponto A(2,4) e tem coeficiente angular 3.

Para encontrar a equação da reta basta substituir os valores dados:

y - 4 = 3 (x - 2)
y - 4 = 3x - 6
-3x + y + 2 = 0

Coeficiente linear

O coeficiente linear n da reta r é definido como o ponto em que a reta intercepta o eixo y, ou seja o ponto de coordenadas P(0,n).

Utilizando esse ponto, temos:

y - n = m (x - 0)

y = mx + n (Equação reduzida da reta).

Exemplo

Sabendo que a equação da reta r é dada por y = x + 5, identifique seu coeficiente angular, sua inclinação e o ponto em que a reta intercepta o eixo y.

Como temos a equação reduzida da reta, então:

m = 1
Sendo m = tg θ ⇒ tg θ = 1 ⇒ θ = 45º
O ponto de interseção da reta com o eixo y é o ponto P(0,n), sendo n=5, então o ponto será P(0,5)

Leia também Cálculo do coeficiente angular

Equação segmentária da reta

Podemos calcular o coeficiente angular usando o ponto A(a,0) que a reta intercepta o eixo x e o ponto B(0,b) que intercepta o eixo y:

Fórmula do coeficiente angular

Considerando n = b e substituindo na forma reduzida, temos:

Equação paramétrica da reta

Dividindo todos os membros por ab, encontramos a equação segmentária da reta:

Equação segmentária da reta

Exemplo

Escreva na forma segmentária, a equação da reta que passa pelo ponto A(5,0) e tem coeficiente angular 2.

Primeiro vamos encontrar o ponto B(0,b), substituindo na expressão do coeficiente angular:

Exemplo equação segmentária da reta

Substituindo os valores na equação, temos a equação segmentária da reta:

Exemplo equação segmentária da reta

Leia também sobre:

Exercícios Resolvidos

1) Dada a reta que tem a equação 2x + 4y = 9 , determine seu coeficiente angular.

4y = - 2x + 9
y = - 2/4 x + 9/4
y = - 1/2 x + 9/4
Logo m = - 1/2

2) Escreva a equação da reta 3x + 9y - 36 = 0 na forma reduzida.

y = -1/3 x + 4

3) ENEM - 2016

Para uma feira de ciências, dois projéteis de foguetes, A e B, estão sendo construídos para serem lançados. O planejamento é que eles sejam lançados juntos, com o objetivo de o projétil B interceptar o A quando esse alcançar sua altura máxima. Para que isso aconteça, um dos projéteis descreverá uma trajetória parabólica, enquanto o outro irá descrever uma trajetória supostamente retilínea. O gráfico mostra as alturas alcançadas por esses projéteis em função do tempo, nas simulações realizadas.

Enem 146

Com base nessas simulações, observou-se que a trajetória do projétil B deveria ser alterada para que o
objetivo fosse alcançado.

Para alcançar o objetivo, o coeficiente angular da reta que representa a trajetória de B deverá
a) diminuir em 2 unidades.
b) diminuir em 4 unidades.
c) aumentar em 2 unidades.
d) aumentar em 4 unidades.
e) aumentar em 8 unidades.

Primeiro devemos encontrar o valor inicial do coeficiente angular da reta B.
Lembrando que m= tg Ɵ, temos:
m1 = 12/6 = 2
Para passar pelo ponto de altura máxima da trajetória de A, o coeficiente angular da reta B terá que ter o seguinte valor:
m2 = 16/4 = 4
Assim o coeficiente angular da reta B terá que passar de 2 para 4, logo aumentará 2 unidades.

Alternativa c: aumentar 2 unidades

Veja também: Exercícios sobre Geometria Analítica

Rosimar Gouveia
Rosimar Gouveia
Bacharel em Meteorologia pela Universidade Federal do Rio de Janeiro (UFRJ) em 1992, Licenciada em Matemática pela Universidade Federal Fluminense (UFF) em 2006 e Pós-Graduada em Ensino de Física pela Universidade Cruzeiro do Sul em 2011.