Exercícios de Função Afim
A função afim ou função polinomial do 1º grau, representa qualquer função do tipo f (x) = ax + b, com a e b números reais e a ≠ 0.
Este tipo de função pode ser aplicada em diversas situações do cotidiano, nas mais variadas áreas. Portanto, saber resolver problemas que envolvem este tipo de cálculo é fundamental.
Questão 1
Um atleta ao ser submetido a um determinado treino específico apresenta, ao longo do tempo, ganho de massa muscular. A função P(t) = P0 + 0,19 t, expressa o peso do atleta em função do tempo ao realizar esse treinamento, sendo P0 o seu peso inicial e t o tempo em dias.
Considere um atleta que antes do treinamento apresentava 55 kg e que necessita chegar ao peso de 60 kg, em um mês. Fazendo unicamente esse treinamento, será possível alcançar o resultado esperado?
Questão 2
Uma certa indústria produz peças de automóveis. Para produzir essas peças a empresa possui um custo mensal fixo de R$ 9 100,00 e custos variáveis com matéria prima e demais despesas associadas à produção. O valor dos custos variáveis é de R$ 0,30 por cada peça produzida.
Sabendo que o preço de venda de cada peça é de R$ 1,60, determine o número necessário de peças que a indústria deverá produzir por mês para não ter prejuízo.
Questão 3
Uma empresa de telefonia oferece dois tipos de planos:
- Plano Plus: 3,5 GB de internet, mais ligações ilimitadas para telefones fixos e celulares.
- Plano Econômico: 3,5 GB de internet, mais 50 min de ligações para telefones fixos e celulares.
O plano Plus custa por mês R$ 65,90, já o plano Econômico custa R$ 10,80, sendo que é cobrado R$ 1,90 por minuto quando o cliente exceder os 50 min incluídos no plano.
Considerando esses dois planos, usando quantos minutos de ligações por mês, o plano Plus passa a ser mais econômico?
a) 30 min
b) 50 min
c) 60 min
d) 70 min
e) 80 min
Questão 4
(UERJ - 2014) O reservatório A perde água a uma taxa constante de 10 litros por hora, enquanto o reservatório B ganha água a uma taxa constante de 12 litros por hora. No gráfico, estão representados, no eixo y, os volumes, em litros, da água contida em cada um dos reservatórios, em função do tempo, em horas, representado no eixo x.
Determine o tempo x0, em horas, indicado no gráfico.
Questão 5
(Enem - 2016) Uma cisterna de 6 000 L foi esvaziada em um período de 3h. Na primeira hora foi utilizada apenas uma bomba, mas nas duas horas seguintes, a fim de reduzir o tempo de esvaziamento, outra bomba foi ligada junto com a primeira. O gráfico, formado por dois segmentos de reta, mostra o volume de água presente na cisterna, em função do tempo.
Qual é a vazão, em litro por hora, da bomba que foi ligada no início da segunda hora?
a) 1 000
b) 1 250
c) 1 500
d) 2 000
e) 2 500
Questão 6
(Cefet - MG - 2015) Um motorista de táxi cobra, para cada corrida, uma taxa fixa de R$ 5,00 e mais R$ 2,00 por quilômetro rodado. O valor total arrecadado (R) num dia é função da quantidade total (x) de quilômetros percorridos e calculado por meio da função R(x) = ax + b, em que a é o preço cobrado por quilômetro e b, a soma de todas as taxas fixas recebidas no dia. Se, em um dia, o taxista realizou 10 corridas e arrecadou R$ 410,00, então a média de quilômetros rodados por corrida, foi de
a) 14
b) 16
c) 18
d) 20
Questão 7
(Enem - 2012) As curvas de oferta e de demanda de um produto representam, respectivamente, as quantidades que vendedores e consumidores estão dispostos a comercializar em função do preço do produto. Em alguns casos, essas curvas podem ser representadas por retas. Suponha que as quantidades de oferta e de demanda de um produto sejam, respectivamente, representadas pelas equações:
QO = – 20 + 4P
QD = 46 – 2P
em que QO é quantidade de oferta, QD é a quantidade de demanda e P é o preço do produto.
A partir dessas equações, de oferta e de demanda, os economistas encontram o preço de equilíbrio de mercado, ou seja, quando QO e QD se igualam.
Para a situação descrita, qual o valor do preço de equilíbrio?
a) 5
b) 11
c) 13
d) 23
e) 33
Questão 8
(Unicamp - 2016) Considere a função afim f(x) = ax + b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) = 2, podemos afirmar que f(f(3) + f(5)) é igual a
a) 5
b) 4
c) 3
d) 2
Para saber mais, veja também:
- Função Afim
- Função Linear
- Equação da Reta
- O que é função
- Equação do 1º Grau - Exercícios
- Equação do 2º Grau - Exercícios
- Exercícios de Sistemas de Equações do 1º Grau
- Matemática no Enem
- 27 exercícios de Matemática Básica