Critérios de Divisibilidade

Rosimar Gouveia

Os critérios de divisibilidade nos ajudam a saber antecipadamente quando um número natural é divisível por um outro.

Ser divisível significa que quando dividimos esses números, o resultado será um número natural e o resto será igual a zero.

Vamos apresentar os critérios de divisibilidade por 2, 3, 4, 5, 6, 7, 8, 9 e 10.

Divisibilidade por 2

Todo número cujo algarismo da unidade é par será divisível por 2, ou seja, os números terminados por 0, 2, 4, 6 e 8.

Exemplo

O número 438 é divisível por 2, pois termina em 8, que é um número par.

Divisibilidade por 3

Um número é divisível por 3 quando a soma dos seus algarismo é um número divisível por 3.

Exemplo

Verifique se os números 65283 e 91277 são divisíveis por 3.

Solução

Somando os algarismos dos números indicados, temos:

6 + 5 + 2 + 8 + 3 = 24
9 + 1 + 2 + 7 + 7 = 26

Como 24 é um número divisível por 3 (6 . 3 = 24), então 65283 é divisível por 3. Já o número 26, não é divisível por 3, portanto, 91277 também não é divisível por 3.

Divisibilidade por 4

Para um número ser divisível por 4 é necessário que seus dois últimos algarismos sejam 00 ou divisíveis por 4.

Exemplo

Qual das opções abaixo apresenta um números que não é divisível por 4?

a) 35748
b) 20500
c) 97235
d) 70832

Solução

Para responder a questão, vamos verificar os dois últimos algarismos de cada opção:

a) 48 é divisível por 4 (12 . 4 = 48).
b) 00 é divisível por 4.
c) 35 não é divisível por 4, pois não existe nenhum número natural que multiplicado por 4 seja igual a 35.
d) 32 é divisível por 4 ( 8 . 4 = 32)

Portanto, a resposta é a letra c. O número 97235 não é divisível por 4.S

Divisibilidade por 5

Um número será divisível por 5 quando o algarismo da unidade for igual a 0 ou 5.

Exemplo

Comprei um pacote com 378 canetas e quero guardá-las em 5 caixas, de forma que em cada caixa tenha o mesmo número de canetas e que não sobre nenhuma caneta. Isso será possível?

critérios de divisibilidade

Solução

O algarismo da unidade do número 378 é diferente de 0 e 5, logo não será possível dividir as canetas em 5 partes iguais sem sobrar resto.

Divisibilidade por 6

Para um número ser divisível por 6 é necessário que seja ao mesmo tempo divisível por 2 e por 3.

Exemplo

Verifique se o número 43722 é divisível por 6.

Solução

O algarismo da unidade do número é par, logo ele é divisível por 2. Temos ainda que verificar se também é divisível por 3, para isso vamos somar todos os algarismos:

4 + 3 + 7 + 2 + 2 = 18

Como o número é divisível por 2 e por 3, também será divisível por 6.

Divisibilidade por 7

Para saber se um número é divisível por 7 siga os seguintes passos:

  • Separe o algarismo da unidade do número
  • Multiplique esse algarismo por 2
  • Subtraia o valor encontrado do restante do número
  • Verifique se o resultado é divisível por 7. Se não souber se o número encontrado é divisível por 7, repita todo o procedimento com o último número encontrado.

Exemplo

Verifique se o número 3625 é divisível por 7.

Solução

Primeiro, vamos separar o algarismo da unidade, que é 5 e multiplicá-lo por 2. O resultado encontrado é 10. O número sem a unidade é 362, subtraindo 10, temos: 362 - 10 = 352.

Contudo, não sabemos se esse número é divisível por 7, então faremos novamente o processo, conforme indicado abaixo:

35 - 2.2 = 35 - 4 = 31

Como 31 não é divisível por 7, o número 3625 também não é divisível por 7.

Divisibilidade por 8

Um número será divisível por 8 quando os seus três últimos algarismos formem um número divisível por 8. Esse critério é mais útil para números com muitos algarismos.

Exemplo

O resto da divisão do número 389 823 129 432 por 8 é igual a zero?

Solução

Se o número for divisível por 8 o resto da divisão será igual a zero, então vamos verificar se é divisível.

O número formado pelos seus 3 últimos algarismos é 432 e este número é divisível por 8, pois 54 . 8 = 432. Portanto, o resto da divisão do número por 8, será igual a zero.

Divisibilidade por 9

O critério de divisibilidade por 9 é muito parecido com o critério do 3. Para ser divisível por 9 é necessário que a soma dos algarismos que formam o número seja divisível por 9.

Exemplo

Verifique se o número 426 513 é divisível por 9.

Solução

Para verificar, basta somar os algarismos do número, ou seja:

4 + 2 + 6 + 5 + 1 + 3 = 21

Como 21 não é divisível por 9, então o número 426 513 também não será.

Divisibilidade por 10

Todo número que o algarismo da unidade é igual a zero é divisível por 10.

Exemplo

O resultado da expressão 76 + 2 . 7 é um número divisível por 10?

Solução

Resolvendo a expressão:

76 + 2 . 7 = 76 + 14 = 90

90 é divisível por 10, pois termina com 0.

Para saber mais, veja também:

Exercícios Resolvidos

1) Dentre os números apresentados abaixo, o único que não é divisível por 7 é:

a) 546
b) 133
c) 267
d) 875

Usando o critério para o 7, temos:

a) 54 - 6 . 2 = 54 - 12 = 42 (divisível por 7)
b) 13 - 3 . 2 = 13 - 6 = 7 (divisível por 7)
c) 26 - 7 . 2 = 26 - 14 = 12 (não é divisível por 7)
d) 87 - 5 . 2 = 87 - 10 = 77 (divisível por 7)

Alternativa: c) 267

2) Analise as seguintes afirmações:

I - O número 3 744 é divisível por 3 e por 4.
II - O resultado da multiplicação de 762 por 5 é um número divisível por 10.
III - Todo número par é divisível por 6.

Assinale a alternativa correta

a) Apenas a afirmação I é verdadeira.
b) As alternativas I e III são falsas.
c) Todas as afirmações são falsas.
d) Todas as afirmações são verdadeiras.
e) Apenas as alternativas I e II são verdadeiras.

Analisando cada afirmação:

I - O número é divisível por 3: 3 + 7 + 4 + 4 = 18 e também é divisível por 4: 44 = 11 . 4. Afirmação verdadeira.
II - Multiplicando 762 por 5 encontramos 3810 que é um número divisível por 10, pois acaba com 0. Afirmação verdadeira.
III - Por exemplo o número 16 é par e não é divisível por 6, logo nem todo número par é divisível por 6. Portanto, essa afirmação é falsa.

Alternativa: e) Apenas as alternativas I e II são verdadeiras.

3) Para que o número 3814b seja divisível por 4 e por 8 é necessário que b seja igual a:

a) 0
b) 2
c) 4
d) 6
e) 8

Vamos substituir os valores indicados e usar os critérios de divisibilidade para encontrar o algarismo que torna o número divisível por 4 e por 8.

Substituindo por zero, os dois últimos algarismos formarão o número 40 que é divisível por 4, mas o número 140 não é divisível por 8.

Por 2, teremos 42 que não é divisível por 4 e 142 e também não é por 8. Já quando substituímos por 4, temos 44 que é divisível por 4 e 144 e também é divisível por 8.

Também não será 6, pois 46 não é divisível por 4 e 146 e nem por 8. Finalmente, substituindo por 8, temos que o 48 é divisível por 4, mas o 148 não é por 8.

Alternativa: c) 4

Você também pode se interessar por exercícios de divisão.

Rosimar Gouveia
Rosimar Gouveia
Bacharel em Meteorologia pela Universidade Federal do Rio de Janeiro (UFRJ) em 1992, Licenciada em Matemática pela Universidade Federal Fluminense (UFF) em 2006 e Pós-Graduada em Ensino de Física pela Universidade Cruzeiro do Sul em 2011.