Exercícios sobre Teorema de Pitágoras (resolvidos e comentados)
Rafael C. Asth
Professor de Matemática e Física
O teorema de Pitágoras indica que, em um triângulo retângulo, a medida da hipotenusa ao quadrado é igual a soma dos quadrados das medidas dos catetos.
Aproveite os exercícios resolvidos e comentados para tirar todas as suas dúvidas sobre esse importante conteúdo.
Questão 1
Carlos e Ana saíram de casa para trabalhar partindo do mesmo ponto, a garagem do prédio onde moram. Após 1 min, percorrendo um trajeto perpendicular, eles estavam a 13 m de distância um do outro.
Se o carro de Carlos fez 7 m a mais que o de Ana durante esse tempo, a que distância eles estavam da garagem?
a) Carlos estava a 10 m da garagem e Ana estava a 5 m.
b) Carlos estava a 14 m da garagem e Ana estava a 7 m.
c) Carlos estava a 12 m da garagem e Ana estava a 5 m.
d) Carlos estava a 13 m da garagem e Ana estava a 6 m.
Resposta correta: c) Carlos estava a 12 m da garagem e Ana estava a 5 m.
Os lados do triângulo retângulo formado nessa questão são:
hipotenusa: 13 m
cateto maior: 7 + x
cateto menor: x
Aplicando os valores no teorema de Pitágoras, temos:
Agora, aplicamos a fórmula de Bhaskara para encontrar o valor de x.
Por se tratar de uma medida de comprimento, devemos utilizar o valor positivo. Portanto, os lados do triângulo retângulo formado nessa questão são:
hipotenusa: 13 m
cateto maior: 7 + 5 = 12 m
cateto menor: x = 5 m
Sendo assim, Ana estava a 5 metros da garagem e Carlos estava a 12 metros.
Questão 2
Carla ao procurar seu gatinho o avistou em cima de uma árvore. Ela então pediu ajuda a sua mãe e colocaram uma escada junto à árvore para ajudar o gato a descer.
Sabendo que o gato estava a 8 metros do chão e a base da escada estava posicionada a 6 metros da árvore, qual o comprimento da escada utilizada para salvar o gatinho?
a) 8 metros.
b) 10 metros.
c) 12 metros.
d) 14 metros.
Resposta correta: b) 10 metros.
Observe que a altura em que o gato está e a distância que a base da escada foi posicionada formam um ângulo reto, ou seja, um ângulo de 90 graus. Como a escada está posicionada do lado oposto ao ângulo reto, então seu comprimento corresponde à hipotenusa do triângulo retângulo.
Aplicando os valores dados no teorema de Pitágoras descobrimos o valor da hipotenusa.
Portanto, a escada tem comprimento de 10 metros.
Questão 3
De acordo com as medidas apresentadas nas alternativas a seguir, qual apresenta os valores de um triângulo retângulo?
a) 14 cm, 18 cm e 24 cm
b) 21 cm, 28 cm e 32 cm
c) 13 cm, 14 cm e 17 cm
d) 12 cm, 16 cm e 20 cm
Resposta correta: d) 12 cm, 16 cm e 20 cm.
Para saber se as medidas apresentadas formam um triângulo retângulo devemos aplicar o teorema de Pitágoras para cada alternativa.
a) 14 cm, 18 cm e 24 cm
b) 21 cm, 28 cm e 32 cm
c) 13 cm, 14 cm e 17 cm
d) 12 cm, 16 cm e 20 cm
Portanto, as medidas 12 cm, 16 cm e 20 cm correspondem aos lados de um triângulo retângulo, pois o quadrado da hipotenusa, maior lado, é igual a soma do quadrado dos catetos.
Questão 4
Observe as figuras geométricas a seguir, que estão com um dos lados situados na hipotenusa de um triângulo retângulo com medidas 3 m, 4 m e 5 m.
Determine a altura (h) do triângulo equilátero BCD e o valor da diagonal (d) do quadrado BCFG.
a) h = 4,33 m e d = 7,07 m
b) h = 4,72 m e d = 8,20 m
c) h = 4,45 m e d = 7,61 m
d) h = 4,99 m e d = 8,53 m
Resposta correta: a) h = 4,33 m e d = 7,07 m.
Como o triângulo é equilátero, quer dizer que os seus três lados possuem a mesma medida. Ao traçar uma linha que corresponde a altura do triângulo, nós o dividimos em dois triângulos retângulos.
O mesmo acontece com o quadrado. Quando traçamos a linha da sua diagonal, podemos visualizar dois triângulos retângulos.
Aplicando os dados do enunciado no teorema de Pitágoras, descobrimos os valores da seguinte forma:
1. Cálculo da altura do triângulo (cateto do triângulo retângulo):
Chegamos então na fórmula para calcular a altura. Agora, basta substituir o valor de L e calculá-la.
2. Cálculo da diagonal do quadrado (hipotenusa do triângulo retângulo):
Portanto, a altura do triângulo equilátero BCD é 4,33 e o valor da diagonal do quadrado BCFG é 7,07.
(Cefet/MG - 2016) Uma pipa, cuja figura é mostrada a seguir, foi construída no formato do quadrilátero ABCD, sendo e . A vareta da pipa intercepta a vareta em seu ponto médio E, formando um ângulo reto. Na construção dessa pipa, as medidas de usadas são, respectivamente, 25 cm e 20 cm, e a medida de equivale a da medida de .
Nessas condições, a medida de , em cm, é igual a
a) 25.
b) 40.
c) 55.
d) 70.
Alternativa correta: c) 55.
Observando a figura da questão, percebemos que o segmento DE, o qual queremos encontrar, é igual ao segmento BD subtraindo-se o segmento BE.
Desta forma, como sabemos que o segmento BE é igual a 20 cm, então precisamos encontrar o valor do segmento BD.
Note que o problema nos oferece a seguinte informação:
Então, para encontrar a medida de BD, precisamos conhecer o valor do segmento AC.
Como o ponto E divide o segmento em duas partes iguais (ponto médio), então . Portanto, o primeiro passo é encontrar a medida do segmento CE.
Para encontrar a medida de CE, identificamos que o triângulo BCE é retângulo, que BC é a hipotenusa e BE e CE são os catetos, conforme imagem abaixo:
Iremos então, aplicar o teorema de Pitágoras para encontrar a medida do cateto.
252 = 202+x2
625 = 400 + x2
x2 = 625 - 400
x2 = 225
x = √225
x = 15 cm
Para encontrar o cateto, poderíamos ainda ter observado que o triângulo é pitagórico, ou seja, a medida dos seus lados são números múltiplos das medidas do triângulo 3, 4, 5.
Assim, ao multiplicarmos 4 por 5 temos o valor do cateto (20) e se multiplicarmos 5 por 5 temos a hipotenusa (25). Logo, o outro cateto só poderia ser 15 (5 . 3).
Agora que já encontramos o valor de CE, podemos encontrar as demais medidas:
Uma casa de dois pavimentos está sendo construída, sendo necessária uma escada que ligue os dois andares. A fim de projetar corretamente a escada, é preciso conhecer seu comprimento.
Os únicos dados disponíveis são a altura, de três metros, e o comprimento horizontal, do primeiro ao último degrau. Determine o comprimento da escada.
Resposta: 5,83 m
A altura e o comprimento horizontal formam com a escada um triângulo retângulo. O comprimento da escada é obtido pelo Teorema de Pitágoras.
Os catetos possuem 3 e 5 metros.
A raiz quadrada aproximada de 34 é 5,83 metros.
Questão 7
(IFRS - 2017) Considere um triângulo equilátero de lado 5√3 ܿ݉. Qual é a altura e a área deste triângulo, respectivamente?
Alternativa correta: e) 7,5 cm e 75√3/4 cm2
Primeiro, vamos desenhar o triângulo equilátero e traçar a altura, conforme imagem abaixo:
Note que a altura divide a base em dois segmentos de mesma medida, pois o triângulo é equilátero. Observe ainda que o triângulo ACD da figura é um triângulo retângulo.
Desta forma, para encontrar a medida da altura, usaremos o teorema de Pitágoras:
Conhecendo a medida da altura, podemos encontrar a área através da fórmula:
Questão 8
(IFRS - 2016) Na figura abaixo, o valor de x e y, respectivamente, é
Alternativa correta: a) 4√2 e √97.
Para encontrar o valor do x, vamos aplicar o teorema de Pitágoras para o triângulo retângulo que possui catetos iguais a 4 cm.
x2 = 42 + 42
x2 = 16 + 16
x = √32
x = 4√2 cm
Para encontrar o valor de y, também usaremos o teorema de Pitágoras, agora considerando que um cateto mede 4 cm e o outro 9 cm (4 + 5 = 9).
y2 = 42 + 92
y2 = 16 + 81
y = √97 cm
Portanto, o valor de x e y, respectivamente, é 4√2 e √97.
Questão 9
(Aprendiz de Marinheiro - 2017) Observe a figura a seguir.
Na figura acima, tem-se um triângulo isósceles ACD, no qual o segmento AB mede 3 cm, o lado desigual AD mede 10√2 cm e os segmentos AC e CD são perpendiculares. Sendo assim, é correto afirmar que o segmento BD mede:
a) √53 cm
b) √97 cm
c) √111 cm
d) √149 cm
e) √161 cm
Alternativa correta: d) √149 cm
Considerando as informações apresentadas no problema, construímos a figura abaixo:
De acordo com a figura, identificamos que para encontrar o valor de x, será necessário encontrar a medida do lado que chamamos de a.
Como o triângulo ACD é retângulo, aplicaremos o teorema de Pitágoras para encontrar o valor do cateto a.
Agora que já conhecemos o valor do a, podemos encontrar o valor do x, considerando para isso o triângulo retângulo BCD.
Note que o cateto BC é igual a medida do cateto menos 3 cm, ou seja, 10 - 3 = 7 cm. Aplicando o teorema de Pitágoras para esse triângulo, temos:
Portanto, é correto afirmar que o segmento BD mede √149 cm.
Questão 10
(IFRJ - 2013) O pátio de esportes do Campus Arrozal de um Instituto Federal é retangular, com 100 m de comprimento e 50 m de largura, representado pelo retângulo ABCD desta figura.
Alberto e Bruno são dois alunos, que estão praticando esportes no pátio. Alberto caminha do ponto A ao ponto C pela diagonal do retângulo e volta ao ponto de partida pelo mesmo caminho. Bruno parte do ponto B, dá uma volta completa no pátio, andando pelas linhas laterais, e volta ao ponto de partida. Assim, considerando √5 = 2,24 , afirma-se que Bruno andou mais que Alberto
a) 38 m.
b) 64 m.
c) 76 m.
d) 82 m.
Alternativa correta: c) 76 m.
A diagonal do retângulo o divide em dois triângulos retângulos, sendo a hipotenusa igual a diagonal e os catetos iguais aos lados do retângulo.
Desta forma, para calcular a medida da diagonal, vamos aplicar o teorema de Pitágoras:
Considerando que Alberto foi e voltou, então ele percorreu 224 m.
Já Bruno percorreu uma distância igual ao perímetro do retângulo, ou seja:
p = 100 + 50 + 100 + 50
p = 300 m
Portanto, Bruno andou 76 m a mais que Alberto (300 - 112 = 76 m).
Questão 11
(Enem - 2017) Para decorar uma mesa de festa infantil, um chefe de cozinha usará um melão esférico com diâmetro medindo 10 cm, o qual servirá de suporte para espetar diversos doces. Ele irá retirar uma calota esférica do melão, conforme ilustra a figura, e, para garantir a estabilidade deste suporte, dificultando que o melão role sobre a mesa, o chefe fará o corte de modo que o raio r da seção circular de corte seja de pelo menos 3 cm. Por outro lado, o chefe desejará dispor da maior área possível da região em que serão fixados os doces.
Para atingir todos os seus objetivos, o chefe deverá cortar a calota do melão numa altura h, em centímetro, igual a
Alternativa correta: c) 1
Observando a figura apresentada na questão, identificamos que a altura h pode ser encontrada diminuindo-se a medida do segmento OA da medida do raio da esfera (R).
O raio da esfera (R) é igual a metade do seu diâmetro, que neste caso é igual a 5 cm (10 : 2 = 5).
Portanto, precisamos encontrar o valor do segmento OA. Para isso, iremos considerar o triângulo OAB representado na figura abaixo e aplicar o teorema de Pitágoras.
52 = 32 + x2
x2 = 25 - 9
x = √16
x = 4 cm
Poderíamos também encontrar o valor de x diretamente, observando que se trata do triângulo pitagórico 3,4 e 5.
Assim, o valor de h será igual a:
h = R - x
h = 5 - 4
h = 1 cm
Portanto, o chefe deverá cortar a calota do melão numa altura de 1 cm.
Questão 12
(Enem - 2016 - 2ª aplicação) A bocha é um esporte jogado em canchas, que são terrenos planos e nivelados, limitados por tablados perimétricos de madeira. O objetivo desse esporte é lançar bochas, que são bolas feitas de um material sintético, de maneira a situá-las o mais perto possível do bolim, que é uma bola menor feita, preferencialmente, de aço, previamente lançada. A Figura 1 ilustra uma bocha e um bolim que foram jogados em uma cancha. Suponha que um jogador tenha lançado uma bocha, de raio 5 cm, que tenha ficado encostada no bolim, de raio 2 cm, conforme ilustra a figura 2.
Considere o ponto C como o centro da bocha, e o ponto O como o centro do bolim. Sabe-se que A e B são os pontos em que a bocha e o bolim, respectivamente, tocam o chão da cancha, e que a distância entre A e B é igual a d. Nessas condições, qual a razão entre d e o raio do bolim?
Alternativa correta: e) √10
Para calcular o valor da distância d entre os pontos A e B, vamos construir uma figura unindo os centros das duas esferas, conforme mostrado abaixo:
Note que a figura pontilhada em azul tem a forma de um trapézio. Vamos dividir esse trapézio, conforme figura abaixo:
Ao dividir o trapézio, obtemos um retângulo e um triângulo retângulo. A hipotenusa do triângulo é igual a soma do raio da bocha com o raio do bolim, ou seja, 5 + 2 = 7 cm.
A medida de um dos catetos é igual a d e a medida do outro cateto é igual a medida do segmento CA, que é o raio da bocha, menos o raio do bolim (5 - 2 = 3).
Desta forma, podemos encontrar a medida de d, aplicando o teorema de Pitágoras a esse triângulo, ou seja:
72 = 32 - d2
d2 = 49 - 9
d = √40
d = 2 √10
Portanto, a razão entre a distância d e o bolim será dada por:.
Questão 13
(Enem - 2014) Diariamente, uma residência consome 20 160 Wh. Essa residência possui 100 células solares retangulares (dispositivos capazes de converter a luz solar em energia elétrica) de dimensões 6 cm x 8 cm. Cada uma das tais células produz, ao longo do dia, 24 Wh por centímetro de diagonal. O proprietário dessa residência quer produzir, por dia, exatamente a mesma quantidade de energia que sua casa consome. Qual deve ser a ação desse proprietário para que ele atinja o seu objetivo?
a) Retirar 16 células.
b) Retirar 40 células.
c) Acrescentar 5 células.
d) Acrescentar 20 células.
e) Acrescentar 40 células.
Alternativa correta: a) Retirar 16 células.
Primeiro, será necessário descobrir qual é a produção de energia de cada célula. Para isso, precisamos descobrir a medida da diagonal do retângulo.
A diagonal é igual a hipotenusa do triângulo de catetos iguais a 8 cm e 6 cm. Iremos então, calcular a diagonal aplicando o teorema de Pitágoras.
Entretanto, observamos que o triângulo em questão é pitagórico, sendo múltiplo do triângulo 3,4 e 5.
Desta forma, a medida da hipotenusa será igual a 10 cm, pois os lados do triângulo pitagórico 3,4 e 5 estão multiplicados por 2.
Agora que já conhecemos a medida da diagonal, podemos calcular a energia produzida pelas 100 células, ou seja:
E = 24 . 10 . 100 = 24 000 Wh
Como a energia consumida é igual a 20 160 Wh, teremos que reduzir o número de células. Para encontrar esse número iremos fazer:
24 000 - 20 160 = 3 840 Wh
Dividindo esse valor pela energia produzida por uma célula, encontramos o número que deverá ser reduzido, ou seja:
3 840 : 240 = 16 células
Portanto, a ação do proprietário para que ele atinja o seu objetivo deverá ser retirar 16 células.
Professor de Matemática licenciado, pós-graduado em Ensino da Matemática e da Física e Estatística. Atua como professor desde 2006 e cria conteúdos educacionais online desde 2021.
ASTH, Rafael. Exercícios sobre Teorema de Pitágoras (resolvidos e comentados).Toda Matéria, [s.d.]. Disponível em: https://www.todamateria.com.br/teorema-de-pitagoras-exercicios/. Acesso em: