Volume do Cilindro

Rosimar Gouveia

O volume do cilindro está relacionado com a capacidade dessa figura geométrica. Lembre-se que o cilindro ou cilindro circular é um sólido geométrico alongado e arredondado.

Ele possui o mesmo diâmetro ao longo de todo o comprimento e duas bases: superior e inferior. As bases são dois círculos paralelos com raios de medidas iguais.

O raio do cilindro é a distância entre o centro da figura e a extremidade. Sendo assim, o diâmetro equivale duas vezes o raio (d=2r).

Volume do Cilindro

Muitas figuras de formato cilíndrico estão presentes no nosso cotidiano, por exemplo: pilhas, copos, latas de refrigerante, de achocolatados, de ervilhas, de milho, etc.

Importante notar que o prisma e o cilindro são sólidos geométricos semelhantes, sendo que o volume deles é calculado pela mesma fórmula.

Fórmula: Como Calcular?

A fórmula para encontrar o volume do cilindro corresponde ao produto da área de sua base pela medida da altura.

O volume do cilindro é calculado em cm3 ou m3:

V = Ab.h ou V = π.r2.h

Onde:

V: volume
Ab: área da base
π (Pi): 3,14
r: raio
h: altura

Quer saber mais sobre o tema? Leia os artigos:

Exercícios Resolvidos

1. Calcule o volume de um cilindro cuja altura mede 10 cm e o diâmetro da base mede 6,2 cm. Utilize o valor de 3,14 para π.

Primeiramente, vamos encontrar o valor do raio dessa figura. Lembre-se que o raio é duas vezes o diâmetro. Para tanto, dividimos o valor do diâmetro por 2:

6,2 : 2 = 3,1

Logo,

r: 3,1 cm
h: 10 cm

V = π.r2.h
V = π . (3,1)2 . 10
V = π . 9,61 . 10
V = π. 96,1
V = 3,14 . 96,1
V = 301,7 cm3

2. Um tambor cilíndrico tem uma base de 60 cm de diâmetro e a altura de 100 cm. Calcule a capacidade desse tambor. Utilize o valor de 3,14 para o π.

Primeiramente, vamos encontrar o raio dessa figura, dividindo o valor do diâmetro por 2:

60 : 2 = 30 cm

Assim, basta colocar na fórmula os valores:

V = π.r2.h
V = π . (30)2 . 100
V = π . 900 . 100
V = 90.000 π
V = 282.600 cm3

Exercícios de Vestibular com Gabarito

O tema sobre volume do cilindro é muito explorado nos vestibulares. Portanto, confira abaixo dois exercícios que caíram no ENEM:

1. A figura abaixo mostra um reservatório de água na forma de cilindro circular reto, com 6 m de altura. Quando está completamente cheio, o reservatório é suficiente para abastecer, por um dia, 900 casas cujo consumo médio diário é de 500 litros de água. Suponha que, um certo dia, após uma campanha de conscientização do uso da água, os moradores das 900 casas abastecidas por esse reservatório tenham feito economia de 10% no consumo de água. Nessa situação:

Volume do Cilindro

a) a quantidade de água economizada foi de 4,5 m3.
b) a altura do nível da água que sobrou no reservatório, no final do dia, foi igual a 60 cm.
c) a quantidade de água economizada seria suficiente para abastecer, no máximo, 90 casas cujo consumo diário fosse de 450 litros.
d) os moradores dessas casas economizariam mais de R$ 200,00, se o custo de 1 m3 de água para o consumidor fosse igual a R$ 2,50.
e) um reservatório de mesma forma e altura, mas com raio da base 10% menor que o representado, teria água suficiente para abastecer todas as casas.

Resposta : letra b

2. (Enem/99) Uma garrafa cilíndrica está fechada, contendo um líquido que ocupa quase completamente seu corpo, conforme mostra a figura. Suponha que, para fazer medições, você disponha apenas de uma régua milimetrada.

Volume do Cilindro

Para calcular o volume do líquido contido na garrafa, o número mínimo de medições a serem realizadas é:

a) 1
b) 2
c) 3
d) 4
e) 5

Resposta: letra c

Rosimar Gouveia
Rosimar Gouveia
Bacharelada em Meteorologia pela Universidade Federal do Rio de Janeiro (UFRJ) em 1992, Licenciada em Matemática pela Universidade Federal Fluminense (UFF)em 2006 e Pós-Graduada em Ensino de Física pela Universidade Cruzeiro do Sul em 2011.