Razões Trigonométricas

Rosimar Gouveia
Rosimar Gouveia
Professora de Matemática e Física

As razões (ou relações) trigonométricas estão relacionadas com os ângulos de um triângulo retângulo. As principais são: o seno, o cosseno e a tangente.

As relações trigonométricas são resultado da divisão entre as medidas de dois lados de um triângulo retângulo, e por isso são chamadas de razões.

Razões Trigonométricas no Triângulo Retângulo

O triângulo retângulo recebe esse nome pois apresenta um ângulo chamado de reto, que possui o valor de 90°.

Os outros ângulos do triângulo retângulo são menores que 90°, chamados de ângulos agudos. A soma dos ângulos internos é de 180°.

Triângulo Retângulo

Observe que os ângulos agudos de um triângulo retângulo são chamados de complementares. Ou seja, se um deles tem medida x, o outro terá a medida (90°- x).

Lados do Triângulo Retângulo: Hipotenusa e Catetos

Antes de mais nada, temos que saber que no triângulo retângulo, a hipotenusa é o lado oposto ao ângulo reto e o maior lado do triângulo. Já os catetos são os lados adjacentes e que formam o ângulo de 90°.

Note que dependendo dos lados de referência ao ângulo, temos o cateto oposto e o cateto adjacente.

Hipotenusa e Catetos

Feita essa observação, as razões trigonométricas no triângulo retângulo são:

seno

Lê-se cateto oposto sobre a hipotenusa.

cosseno

Lê-se cateto adjacente sobre a hipotenusa.

tangente

Lê-se cateto oposto sobre o cateto adjacente.

Vale lembrar que pelo conhecimento de um ângulo agudo e a medida de um dos lados de um triângulo retângulo, podemos descobrir o valor dos outros dois lados.

Saiba mais:

Ângulos Notáveis

Os chamados ângulos notáveis são os que surgem com maior frequência nos estudos de razões trigonométricas.

Veja a tabela abaixo com o valor dos ângulos de 30°; 45° e 60°:

Relações Trigonométricas 30° 45° 60°
Seno 1/2 √2/2 √3/2
Cosseno √3/2 √2/2 1/2
Tangente √3/3 1 √3

Tabela Trigonométrica

A tabela trigonométrica apresenta os ângulos em graus e os valores decimais do seno, cosseno e tangente. Confira abaixo a tabela completa:

Tabela Trigonométrica Completa

Saiba mais sobre o tema:

Aplicações

As razões trigonométricas possuem muitas aplicações. Assim, conhecendo os valores do seno, cosseno e tangente de um ângulo agudo, podemos fazer diversos cálculos geométricos.

Um exemplo notório, é o cálculo realizado para descobrir o comprimento de uma sombra ou de um prédio.

Exemplo

Qual o comprimento da sombra de uma árvore de 5m de altura quando o sol está a 30° acima do horizonte?

Sombra da árvore

Tg B = AC / AB = 5/s

Uma vez que B = 30° temos que a:

Tg B = 30° = √3/3 = 0,577

Logo,

0,577 = 5/s
s = 5/0,577
s = 8,67

Portanto, o tamanho da sombra é de 8,67 metros.

Exercícios de Vestibular com Gabarito

1. (UFAM) Se um cateto e a hipotenusa de um triângulo retângulo medem 2a e 4a, respectivamente, então a tangente do ângulo oposto ao menor lado é:

a) 2√3
b) √3/3
c) √3/6
d) √20/20
e) 3√3

Alternativa b) √3/3

2. (Cesgranrio) Uma rampa plana, de 36 m de comprimento, faz ângulo de 30° com o plano horizontal. Uma pessoa que sobe a rampa inteira eleva-se verticalmente de:

a) 6√3 m.
b) 12 m.
c) 13,6 m.
d) 9√3 m.
e) 18 m.

Alternativa e) 18 m.

3. (UEPB) Duas ferrovias se cruzam segundo um ângulo de 30°. Em km, a distância entre um terminal de cargas que se encontra numa das ferrovias, a 4 km do cruzamento, e a outra ferrovia, é igual a:

a) 2√3
b) 2
c) 8
d) 4√3
e) √3

Alternativa b) 2

Leia também: Exercícios de trigonometria

Atualizado em
Rosimar Gouveia
Rosimar Gouveia
Bacharel em Meteorologia pela Universidade Federal do Rio de Janeiro (UFRJ) em 1992, Licenciada em Matemática pela Universidade Federal Fluminense (UFF) em 2006 e Pós-Graduada em Ensino de Física pela Universidade Cruzeiro do Sul em 2011.